a2 United States Patent

Gupta et al.

US009128844B2

US 9,128,844 B2
Sep. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

ENHANCING ANALYTICS PERFORMANCE
USING DISTRIBUTED MULTI-TIERING

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Karan Gupta, San Jose, CA (US);
Himabindu Pucha, San Jose, CA (US);
Prasenjit Sarkar, San Jose, CA (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/630,203

Filed: Feb. 24, 2015
Prior Publication Data
US 2015/0169448 Al Jun. 18, 2015

Related U.S. Application Data

Continuation of application No. 13/715,583, filed on
Dec. 14, 2012, now Pat. No. 9,021,219.

Int. Cl1.

GO6F 12/00 (2006.01)

GO6F 12/08 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC ... GO6F 12/08 (2013.01); GOGF 17/30221

(2013.01); GOGF 2212/254 (2013.01)
Field of Classification Search
CPC e GOGF 17/30221
See application file for complete search history.

600

N

Is Access
io Object »
Threshoid?

Is Fetch

Object Selscted for
Eviction from Tier,

(56) References Cited

U.S. PATENT DOCUMENTS

7,546,486 B2 6/2009 Slik et al.

7,631,214 B2 12/2009 Bockhold et al.

8,028,146 B2* 9/2011 Yamamoto 711/173

8,285,948 B2 10/2012 Elliott et al.

8,601,181 B2 12/2013 Miura et al.

8,788,786 B2* 7/2014 Yamamoto 711/173
2001/0052106 Al* 12/2001 Wuytack etal. 716/2
2008/0155310 Al 6/2008 Langen et al.

OTHER PUBLICATIONS

IBM, Method and System for Multi-Tiered Abstract XML Content
Services, Aug. 27, 2009.

Liao et al., A Resynchronization Method Based on Request Logs for
Data Replication in a Multi-Tier Network Database Environment,
Nokia Siemens Networks 2007.

* cited by examiner

Primary Examiner — Brian Peugh

(74) Attorney, Agent, or Firm — Lieberman & Brandsdorfer,
LLC

(57) ABSTRACT

Embodiments relate to cluster-centric tiered storage with a
flexible tier definition to support performance of transactions.
Object data is distributed in a multi-tiered shared-nothing
cluster. Hierarchical tiers of data storage are assigned difter-
ent roles within the hierarchy. The tiers are arranged accord-
ing to a number of cycles required to access atier. The tiers are
managed globally across the cluster and objects are placed in
tiers according to a flexible tier definition and the tier arrange-
ment. The probability of object access is computed for
objects, and objects are placed on different tiers responsive to
the computation and the number of cycles required to access
the tier. Objects are moved between tiers responsive to a
probability frequency of object access.

20 Claims, 9 Drawing Sheets

-804

Ja €08
NO Demote Objectto

a Lower Tler in the
Starage Hierarchy

Latency within
Nodes in Tier,
Lower than in
Tief

YES

Evict Object, to
Tier, in a Different Node

US 9,128,844 B2

Sheet 1 of 9

Sep. 8, 2015

U.S. Patent

L BId
(sjacimeg |
BUSIKg | ik
A
02t~ ¥
BIBDY MIOMIBN mmmmwww@wg PELEN Y N
.p S /
74 pcd!
> .
(I g Wie
: : ey
) ..i}/mﬁ » SR BUISS800id
wasAg | ¥
sbeioyg = =gt
SN i
Lol \
Aiouap 081
{ -~ g1l
.
get IBABG/URISAL JEINdWoD

Gil

US 9,128,844 B2

Sheet 2 of 9

Sep. 8, 2015

U.S. Patent

¢ Ol

US 9,128,844 B2

Sheet 3 of 9

Sep. 8, 2015

U.S. Patent

¢ Old

- 09
/

QIBMBOS DUR BIERDIEH

SHUDISAT

FHIARTE
[pELegy

ABUEIIeY

aieinig

&

usiedient .\.\

Ele el
I

4 pue \\\Emimm:&,

{1 \\\. [BAS™ 0

fupcpinely

SUNCEDY g
s \\ ~888
4
\

SOEOPUTA,

r S

\\ [0 B0

N

fenan

\ Bpgsaney fissano: g g
HogossUE] hx \\ sagfiviy LG

U.S. Patent Sep. 8, 2015 Sheet 4 of 9 US 9,128,844 B2

4@@
\\
%
/
.1y
412 /
Registers
414 \
//\ Caches
/ \\
496
71 - Memory \
/ \

418 /
/‘\ Hemote Memory
420
. Flash Drives

492 - N
~ Spinning Disks \\
{ \

U.S. Patent

Sep. 8, 2015

Sheet 5 of 9

Ty @ NOCES i 500

Cluster

¥

n = 1 {Node Count}

¥

1 {Ohjsct Count}

Nom

.

Tier = Storage Twrs 508

in Noda,

!

t=1

!

510

Read Transaction for
{bjact in Tier, Node,

'
514

Read Miss

US 9,128,844 B2

o
R R St
- = e B
Y\'\fﬁm 528 * £59
s < Tier “‘:}ﬂ_# o ‘_a‘(J n (ﬂé)z
Totel? - \\ .
\KES YES
Read Transaction P'" 520
For Bach Instance of Ghject Stored
NO > irj CE& 1 Lhoese Instance with
_ Found? Minimum Computed Felch Latency
Compute Predictsd Feich 54

Latercy for Object

U.S. Patent

Sep. 8, 2015 Sheet 6 of 9 US 9,128,844 B2
600
Object Selected for - { o
Fviction from Tier, s
k:
Raview Accass 04
Patterns to Ohject |~ ©
7608
~B08 -
Is Acoess . NG Demote Chisctio
i Obyect » > =—» alower Tierinthe
Threshﬁid?/ Slorags Hisrarchy
. YES
g10 \ v
Access Probability

15 High

612

is Feich
Latenoy within
Modes in Tier,
Lowsr than in
Tier,,

| VES

Evict Objact, 1o 3
Tier, in a Differsnt Nods

FIG. 6

U.S. Patent Sep. 8, 2015 Sheet 7 of 9 US 9,128,844 B2

700

~ Object Resides 70D
in Tier s -

%
Read Objecty 704
15 Tigr, '

¥
| Read Miss - 706

¥
MNeed to Feleh Object, | one
for a Different Tier g

%
LookatReference 1 ..,

Paitern of Object ’

£ 714

~712
vey b ‘
s Ancess . NO .Mwe.%}bjevt t? Tier,
from Tier ., Including

i rag ? . o e -
f < Thresheld? - Placing Ubjed in Tier .

YES

Future Access Likely Low b——716

¥
Move Obiedl, o Ter,
from Tier . Without 716
Piacing Object in Tiary,.

FIG. 7

U.S. Patent Sep. 8, 2015 Sheet 8 of 9 US 9,128,844 B2

Seleci Tiert +—802

¥
Tipg, = Nodes
Containing t

808

4
Salect Chject Contained
in Tiert

808

¥
(e has Refgrence
Bit and Dirty Bit

814,

Oyt

<D = Threshaidd D

: e
Dirty?
Vs \\v/
B8~ YES 826, P YES
3 ¥
Hroadoast Changes o Clear Dirty Bit i
Al Nodes in Cluster

¥ -
- X) Move Obilect
Clear Reference Bit H frym | 1D {1

830~

. ‘ ¥
D=1
n =1 —
- 534

FIG. 8

US 9,128,844 B2

Sheet 9 of 9

Sep. 8, 2015

U.S. Patent

§ Ol

986+ 286
086~
GO)
wiehs S weiss L 1 on
mmmhammw - G868 wmm,mg“mw - J56
| _
Washs . HEIREY 1
iy — 0 sig et~ 56
m _
. B . I
AOWa 1 pyssancig Aouiapy ﬁ BUISS8001d
I | m : W.]
R 26 EEN AT
_‘mwoz c@VOZ
: {
L Mmi /.Q o
028 LEnn 6 SN
N@@L

US 9,128,844 B2

1

ENHANCING ANALYTICS PERFORMANCE
USING DISTRIBUTED MULTI-TIERING

CROSS REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation patent application claim-
ing the benefit of the filing date of U.S. patent application Ser.
No. 13/715,583 filed on Dec. 14, 2012 and titled “Enhancing
Analytics Performance Using Distributed Multi-Tiering”
now U.S. Pat. No. 9,021,219, which is hereby incorporated by
reference.

BACKGROUND

Embodiments relate to an architecture addressing limita-
tions in shared nothing clusters. More specifically, embodi-
ments implement cluster-centric tiered storage with a flexible
tier definition to support performance of transactions.

A shared nothing computer cluster is a distributed comput-
ing architecture where each computer node is independent
and tasks are divided between computers. No one computer
node in the cluster has to wait for another computer node in
the cluster to perform a task. In other words, there is no single
point of failure, as known in a storage area network.

Each node in the shared nothing cluster has some form of
data storage, including volatile and persistent. As data is
created, it is stored in at least one data storage location,
including volatile and/or persistent. The goal in storing data is
to decrease the response time to read that data in support of a
read transaction. Different formations of the data storage have
different levels of performance, and are generally arranged in
some form of a hierarchy so that frequently accessed data may
be present on a faster form of memory than infrequently
accessed data.

BRIEF SUMMARY

A method, computer program product, and system are
provided for optimizing placement of data in a multi-tier
storage system in a shared-nothing computer cluster.

In one aspect, a method is provided for placing an object in
a storage tier within the multi-tier system. A computer cluster
is provided in communication with a storage system orga-
nized in a hierarchy, with different roles assigned to each
storage tier within the hierarchy while supporting global
management of the storage tiers across the computer cluster.
The storage tiers are arranged according to a number of cycles
required to access a tier. Management of the tiers takes place
responsive to a flexible tier definition within the hierarchy and
the tier arrangement. As an object is designated for placement
in data storage, a tier within the hierarchy is selected respon-
sive to a probability of access of the object and the number of
cycles required to access the tier. Accordingly, one or more
objects are intelligently placed within the hierarchy to opti-
mize the efficiency of the storage system.

In another aspect, a computer program product is provided
to optimize placement of an object in a shared-nothing com-
puter cluster having multi-tiered storage. A computer-read-
able medium is provided with program code executable by a
processor. When executed, the program code organizes a
storage system within the cluster in a hierarchy. The organi-
zation includes assigning different roles to storage tiers
within the hierarchy. Program code is provided to arrange the
tiers according to a number of cycles required to access a tier.
Program code is further provided to address a flexible tier
definition provided within the hierarchy, and to place one or

15

25

30

35

40

45

2

more objects in a select storage tier within the hierarchy
responsive to the flexible tier definition and the tier arrange-
ment. The location of object placement in the hierarchy is
optimized in response to a probability of access of the object
and the number of cycles required to access the tier. Accord-
ingly, the computer program product recognizes the hierarchy
of the storage system, and utilizes the different roles of the
tiers within the hierarchy for placement of data

In yet another aspect, a system is provided with a shared-
nothing computer cluster having a storage system organized
into a hierarchical structure. At least two computer nodes are
provided in the computer cluster and in communication with
the storage system. Each tier in the storage system hierarchy
is assigned a different role. A filesystem is provided in com-
munication with the storage system to manage an object
within the hierarchy. The filesystem arranges the tiers accord-
ing to a number of cycles required to access a tier. The tiers in
the hierarchy are managed responsive to the flexible tier defi-
nition and the tier arrangement. One or more objects are
placed in a select storage tier responsive to a probability of
access of the object and the number of cycles required to
access the tier. Accordingly, one or more objects are intelli-
gently managed within the hierarchy to optimize the effi-
ciency of the storage system.

Other features and advantages will become apparent from
the following detailed description of the presently preferred
and/or alternative embodiments, taken in conjunction with
the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The drawings referenced herein form a part of the specifi-
cation. Features shown in the drawings are meant as illustra-
tive of only some embodiments, and not of all embodiments
unless otherwise explicitly indicated. Implications to the con-
trary are otherwise not to be made.

FIG. 1 depicts a cloud computing node according to an
embodiment.

FIG. 2 depicts a cloud computing environment according
to an embodiment.

FIG. 3 depicts abstraction model layers according to an
embodiment.

FIG. 4 is a block diagram illustrating a storage system
hierarchy for a cluster.

FIG. 5 depicts a flow chart illustrating a method for choos-
ing an instance of an object with minimum predicted fetch
latency.

FIG. 6 depicts a flow chart illustrating a method for evict-
ing an object from a tier.

FIG. 7 depicts a flow chart illustrating a method for skip-
ping a tier upon eviction and placement of an object in a
different tier.

FIG. 8 depicts a flow chart illustrating a method for demot-
ing an object to a different tier.

FIG. 9 is a block diagram illustrating a system for a multi-
tiered cluster having optimized data storage placement.

DETAILED DESCRIPTION

Itwill be readily understood that components of the present
embodiment(s), as generally described and illustrated in the
Figures herein, may be arranged and designed in a wide
variety of different configurations. Thus, the following
detailed description of the embodiments of the apparatus,
system, and method, as presented in the Figures, is not

US 9,128,844 B2

3

intended to limit the scope as claimed, but is merely repre-
sentative of selected embodiments.

Reference throughout this specification to “a select
embodiment,” “one embodiment,” or “an embodiment”
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at
least one embodiment. Thus, appearances of the phrases “a
select embodiment,” “in one embodiment,” or “‘in an embodi-
ment” in various places throughout this specification are not
necessarily referring to the same embodiment.

Furthermore, the described features, structures, or charac-
teristics may be combined in any suitable manner in one or
more embodiments. In the following description, numerous
specific details are provided, such as examples of a placement
manager, computation manager, etc., to provide a thorough
understanding of embodiments. One skilled in the relevant art
will recognize, however, that the embodiment(s) can be prac-
ticed without one or more of'the specific details, or with other
methods, components, materials, etc. In other instances, well-
known structures, materials, or operations are not shown or
described in detail to avoid obscuring aspects of the embodi-
ment(s).

The illustrated embodiments will be best understood by
reference to the drawings, wherein like parts are designated
by like numerals throughout. The following description is
intended only by way of example, and simply illustrates cer-
tain selected embodiments of devices, systems, and processes
that are consistent with the embodiment(s) as claimed herein.

In the following description of the embodiments, reference
is made to the accompanying drawings that form a part
hereof, and which shows by way of illustration the specific
embodiment which may be practiced. It is to be understood
that other embodiments may be utilized because structural
changes may be made without departing from the scope.

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.
Referring now to FIG. 1, a schematic of an example ofa cloud
computing node is shown. Cloud computing node (110) is
only one example of a suitable cloud computing node and is
notintended to suggest any limitation as to the scope of use or
functionality of embodiments described herein. Regardless,
cloud computing node (110) is capable of being implemented
and/or performing any of the functionality set forth herein-
above. In cloud computing node (110) there is a computer
system/server (112), which is operational with numerous
other general purpose or special purpose computing system
environments or configurations. Examples of well-known
computing systems, environments, and/or configurations that
may be suitable for use with computer system/server (112)
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, hand-held
or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing environ-
ments that include any of the above systems or devices, and
the like.

Computer system/server (112) may be described in the
general context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer systeny/server (112) may be
practiced in distributed cloud computing environments where

10

15

20

25

30

35

40

45

50

55

60

65

4

tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server (112) in cloud
computing node (110) is shown in the form of a general-
purpose computing device. The components of computer sys-
tem/server (112) may include, but are not limited to, one or
more processors or processing units (116), a system memory
(128), and a bus (118) that couples various system compo-
nents including system memory (128) to processor (116). Bus
(118) represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of' example, and not limitation, such architectures include an
Industry Standard Architecture (ISA) bus, a Micro Channel
Architecture (MCA) bus, an Enhanced ISA (EISA) bus,
Video Electronics Standards Association (VESA) local bus,
and a Peripheral Component Interconnects (PCI) bus. A com-
puter system/server (112) typically includes a variety of com-
puter system readable media. Such media may be any avail-
able media that is accessible by a computer system/server
(112), and it includes both volatile and non-volatile media,
and removable and non-removable media.

System memory (128) can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) (130) and/or cache memory (132).
Computer system/server (112) may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage sys-
tem (134) can be provided for reading from and writing to a
non-removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a mag-
netic disk drive for reading from and writing to a removable,
non-volatile magnetic disk (e.g., a “floppy disk™), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus (18) by one or more data media
interfaces. As will be further depicted and described below,
memory (28) may include at least one program product hav-
ing a set (e.g., at least one) of program modules that are
configured to carry out the functions of the embodiment(s).

Program/utility (140), having a set (at least one) of pro-
gram modules (142), may be stored in memory (128) by way
of'example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating systems, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. Program modules (142)
generally carry out the functions and/or methodologies of the
embodiment(s) as described herein.

Computer system/server (112) may also communicate
with one or more external devices (114), such as a keyboard,
a pointing device, a display (124), etc.; one or more devices
that enable a user to interact with computer system/server
(112); and/or any devices (e.g., network card, modem, etc.)
that enable computer system/server (112) to communicate
with one or more other computing devices. Such communi-
cation can occur via Input/Output (I/O) interfaces (122). Still
yet, computer system/server (112) can communicate with one
or more networks such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter (120). As depicted,

US 9,128,844 B2

5

network adapter (120) communicates with the other compo-
nents of computer system/server (112) via bus (118). It should
be understood that although not shown, other hardware and/
or software components could be used in conjunction with
computer system/server (112). Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

Referring now to FIG. 2, illustrative cloud computing envi-
ronment (250) is depicted. As shown, cloud computing envi-
ronment (250) comprises one or more cloud computing nodes
(210) with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone (254A), desktop computer
(254B), laptop computer (254C), and/or automobile com-
puter system (254N) may communicate. Nodes (210) may
communicate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks, such
as Private, Community, Public, or Hybrid clouds as described
hereinabove, or a combination thereof. This allows cloud
computing environment (250) to offer infrastructure, plat-
forms and/or software as services for which a cloud consumer
does not need to maintain resources on a local computing
device. It is understood that the types of computing devices
(254 A)-(254N) shown in FIG. 2 are intended to be illustrative
only and that computing nodes (210) and cloud computing
environment (250) can communicate with any type of com-
puterized device over any type of network and/or network
addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment (250) is
shown. It should be understood in advance that the compo-
nents, layers, and functions shown in FIG. 3 are intended to be
illustrative only and embodiments are not limited thereto. As
depicted, the following layers and corresponding functions
are provided: hardware and software layer (360), virtualiza-
tion layer (362), management layer (364), and workload layer
(366). The hardware and software layer (360) includes hard-
ware and software components. Examples of hardware com-
ponents include mainframes, in one example IBM® zSeries®
systems; RISC (Reduced Instruction Set Computer) architec-
ture based servers, in one example IBM pSeries® systems;
IBM xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer (362) provides an abstraction layer
from which the following examples of virtual entities may be
provided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer (364) may provide the
following functions: resource provisioning, metering and
pricing, user portal, service level management, and SLA
planning and fulfillment. The functions are described below.
Resource provisioning provides dynamic procurement of
computing resources and other resources that are utilized to
perform tasks within the cloud computing environment.
Metering and pricing provides cost tracking as resources that
are utilized within the cloud computing environment, and
billing or invoicing for consumption of these resources. In
one example, these resources may comprise application soft-

30

40

45

50

6

ware licenses. Security provides identity verification for
cloud consumers and tasks, as well as protection for data and
other resources. User portal provides access to the cloud
computing environment for consumers and system adminis-
trators. Service level management provides cloud computing
resource allocation and management such that required ser-
vice levels are met. Service Level Agreement (SLA) planning
and fulfillment provides pre-arrangement for, and procure-
ment of, cloud computing resources for which a future
requirement is anticipated in accordance with an SLA.

Workloads layer (366) provides examples of functionality
for which the cloud computing environment may be utilized.
An example of workloads and functions which may be pro-
vided from this layer includes, but is not limited to, organi-
zation and management of data objects within the cloud com-
puting environment. In the shared pool of configurable
computer resources described herein, hereinafter referred to
as a cloud computing environment, files may be shared
among users within multiple data centers, also referred to
herein as data sites. A series of mechanisms are provided
within the shared pool to provide organization and manage-
ment of data storage. A computer storage system provided
within shared pool of resources contains multiple levels
known as storage tiers. Each storage tier is arranged within a
hierarchy and is assigned a different role within the hierarchy.
It should be understood that this hierarchically organized
storage system maintains a flexible tier definition, such that
tiers can be managed as a singleton on every node or tiers can
be managed globally across all or a subset of the nodes in the
system.

FIG. 4 is a block diagram (400) of one embodiment for the
hierarchy (410) of the storage system. Tiers are arranged
according to the number of cycles required to access the tier.
A multitude of tier levels are provided however any number of
tiers may be implemented. Some examples of tier storage
levels arranged according to average number of cycles
include: registers (412), caches (414), memory (416), remote
memory (418), flash drives (420), and spinning disks (422).
Tiers requiring fewer cycles for access can be accessed more
efficiently and tend to have less storage space. Data objects,
hereinafter referred to as objects, are placed and moved
within tiers responsive to the calculated probability of access
to the object. Accordingly, a hierarchical storage system with
multi-functioning tiers is provided for increased efficiency of
data storage.

In a hierarchical storage system within a node cluster,
copies of objects may be stored and/or accessed in more than
one tier as well as in more than one node. The time required to
locate data in a storage location is referred to as latency. FIG.
5 is a flow chart (500) illustrating a method for selecting an
instance of an object having the lowest predicted latency in
response to a read transaction miss. The valuen,,,;is equal to
the number of nodes in the cluster (502). A counting variable
n is set to the integer value 1 (504), where n represents a
specific node in a cluster. Similarly, an object counting vari-
able x is set to the integer value 1 (506), where x represents a
specific object. The value t,,,, represents the quantity of
storage tiers in a specific cluster node, node,, (508), and a tier
counting variable tis set to the integer value 1 (510). Accord-
ingly, all variables representing the nodes in the cluster, spe-
cific objects, and storage tiers in the storage hierarchy are
initialized.

Following the initialization process, object, is searched for
in tier, of node,, in response to a read transaction (512). In this
example, the object is not found in tier, (514), resulting in a
read miss. In response to the miss (514), the object is searched
for in a different tier. The variable t is incremented (516) and

US 9,128,844 B2

7

it is determined if there are any remaining levels in the hier-
archy to search in response to the read transaction (518). If at
step (518) it is determined that there are additional levels in
the hierarchy, then the read transaction is processed for
object, in tier, (520). Following the read transaction at step
(520) it is determined if the object to support the read trans-
action was found (522). A negative response is followed by a
return to step (516), and a positive response is followed by
computing predicted fetch latency for the found object, (524).
The computation of the fetch latency of object, is followed by
a return to step (516) to see if there are any other instances of
object, in the storage hierarchy.

As shown in steps (516)-(524), the tiers of the storage
hierarchy for a single node in the cluster are searched for
instances of a select object to support a read transaction. If at
step (518) the response to the determination is negative, this is
an indication that all the tiers in node, have been searched.
The node counting variable, n, is incremented to continue the
object search on a different node in the cluster. As shown, the
variable n is incremented (526) and it is determined if all of
the nodes in the cluster have been evaluated for presence of
the object (528). A negative response is followed by an ini-
tialization of the variable t (530) followed by a return to step
(518). However, a positive response to the determination at
step (528) indicates that all tiers in all nodes in the cluster have
been searched for the subject object, object,. Once all of the
tiers in each ofthe nodes in the cluster have been searched, the
fetch latency for each instance of object, is known. The
instance of the object found in the tier that is predicted to have
the minimum fetch latency is selected (532). In one embodi-
ment, the selected object instance is flagged, or otherwise
identified, as a target for any read transactions from a node in
the cluster. Accordingly, following a read transaction miss,
the predicted fetch latency for each instance of an object is
computed and the object is accessed from the object instance
having the minimum fetch latency in the system.

It is known that higher tiers in a storage cluster, while less
expensive to access, tend to have less storage space than lower
tiers. To accommodate limited space in the storage hierarchy,
objects are periodically evicted from higher tiers to make
space for other objects, such as a new objectto be added to one
of the higher tiers. FIG. 6 is a flow chart (600) depicting a
method for evicting an object from a tier and moving the
object within the hierarchy. An object is selected for eviction
from a tier t (602). The access patterns of the selected object
are reviewed (604). In one embodiment, these access patterns
include the frequency at which the object has been accessed
historically. It is determined if the frequency rate at which the
object is accessed is greater than a particular threshold (606).
A negative response is followed by a demotion of the object to
a tier lower in the hierarchy (608). In one embodiment, the
object is demoted from the current tier to the next lower tier in
the hierarchy. Accordingly, objects that are not accessed at a
set frequency are moved to a tier that is more expensive to
access but includes more storage space.

Ifat step (606) it is determined that the object is accessed at
a frequency greater than the threshold, then the predicted
probability of access to the object is considered high (610).
This prediction is followed by determining if within the
nodes, the fetch latency in the current tier, tier is lower than
the fetch latency in the next tier,, ; (612). A negative response
is followed by a return to step (608), demonstrating that
frequently the fetch latency of the object is accounted for with
respect to object placement. A positive response to step (612)
is an indication that the object should remain in this tier in the
hierarchy, and is followed by an eviction of the object from
tier of a first node in the cluster to a tier of a second node in the

10

15

20

25

30

35

40

45

50

55

60

65

8

cluster (614). A frequently accessed object is therefore
cleared for space while still maintaining efficient access from
a different node in the cluster. Accordingly, an object consid-
ered to have a high access probability is moved to a storage
tier of efficient access at the same level in the hierarchy.

As shown in FIG. 6, an object may be evicted to an adjacent
tier, (also referred to as a consecutive tier) or a same level tier
in a different node. FIG. 7 is a flow chart (700) depicting an
example for moving an object within non-adjacent tiers. An
object residing in a lower tier tier,, , is read from tier (704). In
this example, the object that is read from tier does not reside
in tier and the read transaction accordingly results in a read
miss (706). To be read from tier,, the object must be fetched
from a different tier (708). The reference patterns of the object
are reviewed (710), and it is determined if the probability
frequency at which the object is accessed, is less than a
particular threshold (712). The probability assessment is
based on the object reference pattern. If the access frequency
is greater than the particular threshold, the access frequency
of'the object is considered high. The object is moved from the
tier lower than tier to tier and is additionally placed in a tier
higher than the tier from which it was moved yet lower than
tier,. As shown, the object is moved from tier,, , to tier,, and is
additionally placed in tier,,; (714). Accordingly, an object
considered to have high frequency access is placed in a non-
consecutive storage tier to accommodate a read transaction.

If at step (712) the access frequency is less than the par-
ticular threshold then future access frequency is estimated to
be low (716). The object is moved from the tier lower than tier
to tier but is not placed in a tier between that of tier and the tier
from which it was moved (718). For example, if the tiered
storage is a cache layer (tier,), random access memory (tier,,
1), and disk storage (tier,, ,), and the object is read and missed
from the cache layer, the object is moved from the disk
storage to the cache layer and is not additionally placed in
random access memory provided that the object is considered
to have low frequency access. Accordingly, space is not taken
up in additional tiers for objects having a low probability
access frequency.

As demonstrated in FIG. 7, objects may be promoted in the
hierarchy. FIG. 8 is a flow chart (800) illustrating a method for
demoting objects within the hierarchy of the storage system.
A tier is selected (802). A counting variable n, representing a
select node, is initialized (804). The variable n,,,,; is repre-
sentative of a value representing the total number of nodes in
the cluster containing tier, (806). An object contained in tier is
selected (808). The object contains both a reference bit and a
dirty bit (810). A counting variable D is initialized (812). The
variable D is set to maintain equilibrium among all nodes in
the cluster for the management of object data. It is determined
if D is equal to a predetermined threshold (814). A negative
response leads to the determination of whether the object is
dirty (824). In one embodiment, an object in volatile memory
that has been modified, but not yet written back to persistent
storage, is referred to as a dirty object. A positive response to
the determination at step (824) is followed by a clearing of the
dirty bit (816) further followed by a determination if the
object is referenced (828). A negative response to step (824)
is followed by a jump to step (828). A positive response to step
(828) is followed by a clearing of the reference bit (832),
which is further followed by a moving of the object from tier
to a tier greater than tier,. In one embodiment, the object is
moved from tier to tier,,, (832). A negative response to step
(830) is followed by a jump to step (832). Following step
(832), the counting variable D is incremented (834) followed
by a return to step (814). Accordingly, the reference bit and

US 9,128,844 B2

9

the dirty bit of an object are removed from an object prior to
moving the object to a different tier in the hierarchy.

Ifitis determined in step (814) that the counting variable D
is equal to the threshold, then any changes regarding the
movement of objects to different tiers are broadcast to all
nodes in the cluster (816). The value of the counting variable
nisincremented (818), and it is determined if n is greater than
the nodes in the cluster containing tier,, i.e. n,,,,;- A positive
response is followed by initializing n (822) followed by a
return to step (812) and a negative response is followed by a
return to step (812). In one embodiment, the value of n is not
incremented as in step (822). Rather, a new integer value of n
is randomly selected between the values of 1 and n,,,, fol-
lowed by an immediate return to step (812). Accordingly,
objects are periodically moved between tiers across all nodes
in the cluster in an effort to maintain a balance among the tiers
in the storage hierarchy and among the nodes in the cluster.

As will be appreciated by one skilled in the art, aspects may
be embodied as a system, method or computer program prod-
uct. Accordingly, aspects may take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, aspects may take the form of
a computer program product embodied in one or more com-
puter readable medium(s) having computer readable program
code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects may be written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Java, Smalltalk, C++ or the like

10

15

20

25

30

35

40

45

50

55

60

65

10

and conventional procedural programming languages, such
as the “C” programming language or similar programming
languages. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present embodiments are described above
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatus (systems) and computer pro-
gram products. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 9 is ablock diagram (900) illustrating tools embedded
in a computer cluster to efficiently distribute objects in a
hierarchical storage system. A plurality of nodes is provided
in a computer cluster (902) in communication with remote
data storage (980). While two data storage units, (982) and
(984) respectively, are shown, the remote storage (980) may
include any number of data storage units. In the example
shown herein, there are two nodes (910) and (930). However,
the nodes should not be limited to the quantity illustrated. In
the illustration shown herein, node, (910) is shown having a
processing unit (912) in communication with memory (914)
across a bus (916). Node, (910) is in communication with
local persistent storage (950), which is one level of the hier-
archy described in FIG. 8. The volatile layers of the hierarchy,
such as layers (412)-(416) are represented in memory (914).
Node, (930) is in communication with node, (910) across a
network (905). As shown, node; (930) is provided with a
processing unit (932) in communication with memory (934)
across a bus (936), and in communication with local persis-
tent storage system (960), which is one level of the hierarchy
described in FIG. 8. Volatile layers of the hierarchy, such as

US 9,128,844 B2

11

layers (412)-(416) are represented in memory (934). Accord-
ingly, at least two nodes are provided in a system having
tiered storage.

A filesystem (940) is provided in the cluster (902) to man-
age object data in the tiered storage. Node,; (910) is shown
with the filesystem (940) in communication with memory
(934). The functionality supported by the filesystem includes
searching for an instance of the object within the hierarchy in
response to a read transaction for the object. The filesystem
(940) moves an object within a tier to a different tier through
the process of promotion or demotion. In one embodiment,
this movement is reflective of a predicted fetch latency of an
object as calculated by the filesystem (940). More specifi-
cally, the filesystem (940) reviews an access pattern of a
selected object and moves the selected object within the clus-
ter hierarchy based upon the access pattern. In one embodi-
ment, the filesystem (940) evicts a selected object from a
storage tier of a select node and moves the selected object to
the same storage tier within a different node in the cluster.
Accordingly, the filesystem moves a selected object between
tiers and between nodes in the cluster.

The filesystem (940) also computes a predicted fetch
latency for an instance of an object within a particular loca-
tion, and compares predicted fetch latencies for all instances
of the object found in various locations of storage within the
cluster and selects the instance of the object having the mini-
mum computed fetch latency. In one embodiment, the file-
system (940) determines movement of a replica of the data
object between tiers of the hierarchy within a distributed
global clock algorithm. Accordingly, the filesystem (940)
provides a mathematic analysis upon which to base any
movement of the object within the hierarchy or across the
cluster.

The flowcharts and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
each block in the flowcharts or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci-
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart illus-
tration, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting. As used herein, the singular forms “a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising,”
when used in this specification, specify the presence of stated
features, integers, steps, operations, elements, and/or compo-
nents, but do not preclude the presence or addition of one or
more other features, integers, steps, operations, elements,
components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act

5

10

15

20

25

30

35

40

45

50

55

60

65

12

for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present embodiments has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited in the form disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the art
without departing from the scope and spirit. The embodiment
was chosen and described in order to best explain the prin-
ciples and the practical application, and to enable others of
ordinary skill in the art to understand for the various embodi-
ments with various modifications as are suited to the particu-
lar use contemplated. Accordingly, the enhanced cloud com-
puting model supports flexibility with respect to transaction
processing, including, but not limited to, optimizing the stor-
age system and processing transactions responsive to the
optimized storage system.

ALTERNATIVE EMBODIMENT(S)

It will be appreciated that, although specific embodiments
have been described herein for purposes of illustration, vari-
ous modifications may be made without departing from the
spirit and scope. Accordingly, the scope of protection is lim-
ited only by the following claims and their equivalents.
What is claimed is:
1. A method comprising:
in a computer cluster in communication with a storage
system, the storage system organized in a hierarchy,
assigning a different role to each storage tier within the
hierarchy, each role related to a workload characteristic;

arranging the tiers according to a number of cycles required
to access a tier;

managing the tiers across the cluster, the management

responsive to a flexible tier definition within the hierar-
chy and the tier arrangement; and

selecting a first storage tier for placement of a data object,

and placing the data object in the first tier, the selection
responsive to a calculated probability of access of the
object and the number of cycles required to access the
tier.

2. The method of claim 1, further comprising moving the
object within the hierarchy, the moving comprising:

comparing a frequency of access to the data object to a

threshold; and

placing the object in a second tier based on the comparison.

3. The method of claim 2, wherein the comparison is based
on a reference pattern for the object.

4. The method of claim 2, further comprising moving the
object between non-adjacent tiers of the hierarchy.

5. The method of claim 4, further comprising evaluating a
probability frequency of object access in response to a read
miss of the object.

6. The method of claim 5, further comprising placing the
object in a non-adjacent tier to accommodate a read action for
a high probability frequency of object access.

7. The method of claim 5, further comprising moving the
object to an adjacent tier to accommodate a read action for a
low probability frequency of object access.

8. A computer program product for use with objects in a
computer cluster, the computer program product comprising
a computer-readable storage medium having program code
embodied therewith, the program code being executable by a
processor to:

organize a storage system in communication with the clus-

ter into a hierarchy, including assigning a different role
to each tier within the hierarchy, each role related to a
workload characteristic;

US 9,128,844 B2

13

arrange the tiers according to a number of cycles required

to access a tier;

manage the tiers across the cluster responsive to a flexible

tier definition within the hierarchy and the tier arrange-
ment; and

select a first storage tier for a data object and place the data

object in the first tier, the selection responsive to a cal-
culated probability of access of the object and the num-
ber of cycles required to access the first tier.

9. The computer program product of claim 8, further com-
prising program code to move the object within the hierarchy,
the moving comprising program code to:

compare a frequency of access to the data object to a

threshold; and

place the object in a second tier based on the comparison.

10. The computer program product of claim 9, wherein the
comparison is based on a reference pattern for the object.

11. The computer program product of claim 9, further
comprising program code to move the object between non-
adjacent tiers of the hierarchy.

12. The computer program product of claim 11, further
comprising program code to evaluate a probability frequency
of object access in response to a read miss of the object.

13. The computer program product of claim 12, further
comprising program code to place the object in a non-adja-
cent tier to accommodate a read action for a high probability
frequency of object access.

14. The computer program product of claim 12, further
comprising program code to move the object to an adjacent
tier to accommodate a read action for a low probability fre-
quency of object access.

10

15

20

25

30

14

15. A system comprising:

two or more nodes in a computer cluster in communication
with a storage system, the storage system organized in a
hierarchy, each storage tier assigned a different role
within the hierarchy; and

afilesystem in communication with the storage system, the

file system to manage the tiers across the cluster, includ-

ing:

arrange the tiers according to a number of cycles
required to access a tier;

manage the tiers responsive to a flexible tier definition
and the tier arrangement; and

select a first storage tier for placement of a data object
and place the data object in the selected tier, the selec-
tion responsive to a calculated probability of access of
the object and the number of cycles required to access
the tier.

16. The system of claim 15, further comprising movement
of the object within the hierarchy, comprising:

comparison of a frequency access to the data object to a

threshold; and

placement of the object in a second tier based on the com-

parison.

17. The system of claim 16, wherein the comparison is
based on a reference pattern for the object.

18. The system of claim 16, further comprising movement
of the object within non-adjacent tiers of the hierarchy.

19. The system of claim 18, further comprising evaluation
of a probability frequency of object access to a read miss of
the object.

20. The system of claim 19, further comprising placement
of the object in a non-adjacent tier to accommodate a read
action for a high probability frequency of object access.

#* #* #* #* #*

